History of Instrumental Multiplication and Division in China－from the Reckoning－blocks to the Abacus

By Yoemon Yamazaki ${ }^{1)}$

1．Introductory

The country in the Orient in which mathematics achieved earliest develop－ ment was China，if we except India which lacks accurate data．

Mathematics，or the method of calculation which forms its foundation，as part of the advancement of mathematics，progressed by means of instruments in ancient China．

In this paper，we shall try to explain the varied circumstances under which since remote antiquity the methods of multiplication and division by means of instruments came to be developed．However，as to the earliest days；as in the history of other fields in China，the history starts from half－traditional accounts which are hardly accurate．Therefore，we shall proceed to investigate the deve－ lopment of the methods of multiplication and division based on reliable materials and some deductions，chronologically，from the Three－Dynasty Period 三國時代 （ $220 \sim 280 \mathrm{~A} . \mathrm{D}$ ．）when the method of calculation by means of instruments was definitely recorded to the last days of the Ming period（1368－1644）when the use of the abacus came to be extensively diffused．

2．Concerning Sangiさんぎ（Reckoning－blocks）
In China，if we except the earliest days with only halftraditional accounts， the earliest instrument used for calculation was san－gi．The reckoning blocks， it is admitted，were considerably used in the days of Chou 周 and Han 漠（B．C． $1122 \sim$ A．D．220）which were feudalistic states．

As for the name Sangi Li Yen 李㩔 in his Chung－suan－shih－lun－ts＇ung 中算吏論鋠（A Paper on the History of Chinese Mathematics）Pt． 4 entitled Chou－ suan－chih－to－ka‘o 籌算制度考（Inquiry into $c h^{6} o u$ 籌 Reckoning blocks），says：
＂Ancient people employed $c h^{6} o u$ for calculation．The block were originally
1）With the assistance of Seiichi Toya，Lecturer，Akatsuki Gakuen，and Hisao Suzuki， Lecturer，Dept．of Politics and Economics，Kokushikan University．The present article was first published in Japanese under the title of Kigu ni yoru jöjo－keisan－hö no rekishi器具による乘除計算法の歷史，in Shuzan Shichō 珠算思潮，No．1，Oct．1960，the organ of the Japan Abacus Calculation Society．Refer to another article by the same author， The Origin of the Chinese Abacus，Memoirs of the Toyo Bunko，No．18，1960，which is itself an English version of Chūgoku ni okeru soroban no kigen 中國におけるそろばんの起源，the first chapter of Shuzan－sampō no Rekishi 珠算算法の歷史．
called $t s^{〔} \hat{e}$ 䈜，came to be called suan 算，$c h^{〔} o u$ 籌，ch＇ou－suan 籌算 $t s \hat{e} \hat{e}$－suan 策算， or suan－choou 算簽，until they came to be commonly called suan－tzǔ 算子（cal－ culative pieces）．＂

Various ages had various names for them．In Japan，we commonly call them san－gi さんぎ，

Originally，the reckoning－blocks were in the form of slender columns，later they became square pillars．As for the materials，Li Yen op．cit．says：
＂Originally，bamboo was used．This accounts for the inclusion of the character chu 竹（bamboo）in the upper part of the ideographs $t s^{〔} \hat{e}$ ，suan，chou． Sometimes wood was used．It is for this reason that the Fang－yen 方言 explains $t s^{6} \hat{e}$ 策 as a slender branch．It also says，that later iron，ivory，and precious stone were used sometimes．＂

As for using blocks for numbers，the Sung－tzŭ－suan－ching 孫子算經（a book written about the middle of the 3rd century）says：
＂As the basis of calculation，one must master the method of representing numbers．For units，arrange blocks lengthwise，for tens sidewise，for hundreds vertical and for thousands horizontal．For thousands and tens，ten thousands and hundreds，arrange the blocks in the same way．For numbers over 6，put on top a block which represents 5：don＇t represent 6 by arranging 6 pieces in pallarel，while 5 is not represented by a single block．＂

Such later mathematic works as the Yang－hui－suan－fa 楊輝算法（1274）and the Hsiang－ming－suan－fa 詳明算法（1373）contain numbers represented by reckon－ ing－blocks． 5 is represented as $\|\|\|$ ，and 7 as Π ．If，in this case 31 is represented as $\|\|\|$ ，it will easily be taken to represent as $\|\| \|$（4）；therefore，it was decided that a number of several positions such as 7831，for example，should be repre－ sented as $\perp \Pi \equiv 1$ ，that is，lengthwise and sidewise alternately．

By employing reckoning－blocks for numerals，it was now possible to operate various calculations．

3．Ancient Methods of Multiplication and Division

The oldest Chinese record of the methods of multiplication and division is the previously quoted Sung－tzŭ－suan－ching．The methods of calculation described in this book may be graphically shown as follows：

The method of multiplication：As for $81 \times 81=6561$

Top row	81
Middle row	
Bottom row	81

Put 81，the multiplicand in the top row，and 81 the multiplier in the bottom row．Move 81，the multiplier in the bottom row to the position of 8 the top figure of 81 multiplicand in the top row．
Multiply 8 the top figure of 81 the multiplic－
and by 81 the multiplier in the bottom row in the order:
$8 \times 8=64 ; 8 \times 1=8$; Put the product in the middle row.
Strike off 8 in the multiplicand after calculation is completed. Move down by one position 81 the multiplier, multiply 1 the multiplicand by 81 the multiplier, and add the product to the figure in the middle row. 6561 the result is obtained. Finally, strike off 1 the multiplicand and 81 the multiplier.

Top row	81
Middle row	648
Bottom row	81

Top row	1
Middle row	6561
Bottom row	81

The method of Division:
As for $6561 \div 9=729$
Put 6561 the dividend in the middle row and 9 the divisor in the bottom row, move up 9 the divisor in the bottom row to the position of 6 the top figure of 6561 the divident. As 6 the dividend does not include 9 the divisor, 9 the divisor is moved down by one position. As 65 the dividend is divided by 9 the divisor, the quotient is 7 ; therefore, put 7 in the top row, and subtract from 65 the divident 63 the product of 7 the quotient and 9 the divisor. 9 the divisor is moved down by one position. As 26 the dividend is divided by 9 the divisor, the quotient is 2 ; therefore, put 2 in the top row, and subtract from 26 the divident 18 the product of this and 9 the divisor.
9 the divisor is moved further down by another position. As 81 the dividend is divided by 9 the divisor, the quotient is 9 ; therefore, put this in the top row, and subtract from 81 the dividend from 81 the product of this and 9 the divisor.
Strike off 9 the divisor. The quotient 729 is obtained in the top row.

Top row	
Middle row	6561
Bottom row	9

Top row	7
Middle row	6561
Bottom row	9

Top row	72
Middle row	261
Bottom row	9

Top row	729
Middle row	81
Bottom row	9

Top row
729
In this way, the multiplicand, the product, and the multiplier (or the quotient, the dividend, and the divisor) were put in the three rows, top, middle, and bottom, and multiplication or division was operated.

However, it seems that in the case of such a simpler calculation as doubling
or halving a number，in stead of applying the foregoing complicated method， the multiplicand was put down in the row and at once doubled or the dividend was at once halved．

The Chiu－chang－suan－shu 九章算術（which in 263 Liu Hui 劉徽 annotated to render it the standard version）says：
＂As for reducing fractions to the lowest term，when a number can be halved， it is halved；when a number cannot be halved the denominator and the numerator are arranged one above the other．＂

For example，in calculating

$$
26 \div 8=3 \frac{1}{4} \quad \text { it seems that the following process was adopted. }
$$

Top row	Top row	111	Top row	III
Middle row 二 T	Middle row	11	Middle row	1
Bottom row IIT	Bottom row	π	Bottom row	IIII
$26 \div 8 \longrightarrow$		$3 \frac{2}{8}$		$3 \frac{1}{4}$

The Hsia－hou－yang－suan－ching 夏侯陽算經（c．the 6th century）in operating calculation of an undecimal compound number，for example，in calculating 13 tuan 端 and 2 chang 丈（ 1 tuan 端＝5 chang 丈）in terms of tuan，says＂Double the numer in the position of chang＂；therefore，it seems that operation probably went some what like this：

13 tuan 2 chang $\longrightarrow 13.4$ tuan
Again，the same book taking up the matter of converting weights（ 1 chin $斤=16$ liang 兩，for example，that of converting liang into chin，in explaining $384 \div 16$ ， says＂halving the number four times．＂

Since，such explanations as＂doubling a number＂and＂halving a number＂ occur in the Wu－ts＇ao－suan－shu 五曹算術（c．the 5th century）and also in the Wu－ching－suan－shu 五經算術（c．the 6th century），it seems that such processes were adopted as simplified operations．

4．First Gleam of Simplified Calculation

As stated in the foregoing，it was customary in multiplication and division to calculate by arranging reckoning－blocks in the three rows，top，middle，and bottom；and only in special cases in which a number was doubled or halved， a simplified operation was adopted to change the multiplicand or the dividend at its own position．This simplified operation came to be extended even to an
ordinary case in which the multiplier happened to be a single-figure number.
In the Hsia-hou-yang-suan-ching there occur in a question with a single-place multiplier such explanations as "Multiply it by 5 begining with the bottom figure" and "Multiply it by 7 begining with the top figure." For example, in the case of $612 \times 7=4284$, the multiplicand was probably multiplied by 7 from the top number down.

$T-\\|$	612 the multiplicand is put down.
$42-\\|$	$6 \times 7=42$
$527 \\|$	$1 \times 7=7$
4284	$2 \times 7=14$

In this way, multiplication by a single-place multiplier came to be operated much more easily than by arranging the numbers in the three rows. As the result, even in the case of multiplication by a more than two-place multiplier, this method was adopted when the multiplier could be solved into one-place factors. Calculation was made much more simply this way.

The reason why the Hsia-hou-yang-suan-ching offers "Multiply x first by 6 and then by 7 " this explanation: on $x \times 42$, and another: "Multiply x first by 3 and then by 8 " on $x \times 24$, is only because when a multiplier was a one-place figure the above mentioned calculation was adopted to conduct simpler and faster calculation.

Furthermore, even to a case in which the multiplier was a more than twoplace number and could not be solved into one-place factors, this operation came to be extended. Among the questions for calculating taxes in the Hsia-hou-yang-suan-ching, for example, in calculating $428 \times 23=9844$, it explains; "Put down the multiplicand in two rows, multiply the upper figure by 2 , and move down by one place the lower number and multiply it by 3, and add up the upper and lower figures."

428
428
:---
two rows, moving down by one
place the lower figure.

In this way, not only when the multiplier was a one-place number, but also when it was a two-place number or more, the multiplicand in its own position was changed in operating calculation.

5．Development of the Shên－wai－chia 身外加 method（addition after the figure itself）and Shên－wai－chien 身外減 method （subtraction after the figure itself）

Since ancient China was a feudal state founded upon the basis of agriculture， calculation of taxes formed one of important duties of the government officials． Consequently，Chinese mathematics developed as the mathematics for the govern－ ment officials．

The Hsia－hou－yang－suan－ching contains a number of questions of calculating cereals to be paid in addition to the taxes，for example，one of calculating a tax of 2 additional bushels per 10 bushels．

For example，in calculating $428 \times 12=5136$ ，the above－mentioned method might be employed as follows：

In other words，it was known to be correct if to 428 the multiplicand，twice as much with one－place moved down was added．As the result，it is considered that this kind of calculation developed the following method．

$$
\begin{aligned}
& 11 \|=\pi \\
& \text { (4) (2) (8) } \\
& +\quad 16 \\
& \|\|=\Pi \pi \perp \perp \text { (4)(2) } 96 \\
& +4 \\
& 2 \times 2=4 \text { was added. } \\
& \|\|\equiv\| \perp \perp \text { (4) } 336 \\
& +8 \\
& 4 \times 2=8 \text { was added. } \\
& \text { ||||-||| } 5136
\end{aligned}
$$

The Hsia－hou－yang－ching for the calculation of $\mathrm{A} \times 102$ directs＂Add twice as much beyond one place＂；for the calculation of $\mathrm{A} \times 16$ directs＂Add 6 times a．s much．＂These directions evidently refer to such calculations．That is，when the top figure of the multiplier happens to be 1 ，multiply the multicand by the multiplier，minus 1 the top number and add it to the multiplicand．Latter this came to be called the Shên－wai－chia method．

Again，the Hsia－hou－yang－suan－ching contains such a question of calculating taxes，．．for example，as for the cereals paid as a tax，if 2 bushels were allowed for carriage per 10 bushels paid as a tax，what was the net tax？The expla－ nation for example reads：for calculating $A \div 12$ ，＂Take off twice as much，＂or
"Subtract twice as much from outside the quotient." It may be seen that, in this calculation,

$$
1476 \div 12=123
$$

with 1 the top number of the divisor stricken off, and considering only 2 the divisor, calculation was probably conducted in this way.

	$\begin{aligned} & 1476 \\ & -2 \end{aligned}$	1476 the dividend is put down.	
$-\\| \perp T$	$\text { (1) } 276$	dend is subtracted.	
	-4	Twice 2, the top figure of 276 the remaining dividend is subtracted.	
$-\\| \equiv \perp$	$\begin{array}{r} \text { (1) (2) } 36 \\ -6 \end{array}$	Twice 3, the top figure of 36 , the remaining divided is subtracted.	
$-\\| \equiv$	(1)(2)(3)	123 the result is obtained.	

Like the method of the Shên-wai-chia method in multiplication, the division conducted through omitting the one top figure came to be called the Shên-waichien method. This method, compared with the ancient division separately conducted in the three rows, top, middle, and bottom, respectively representing the quotient, the dividend, and the divisor is more convenient as the quotient may be discovered more automatically.

For example, the calculation of $576 \div 18=32$ is explained as follows:

$$
\begin{aligned}
& \text { TII }\left\|\left\|\| \triangleq T \quad 8 \quad \text { 5(7) }{ }^{6}\right.\right. \\
& 8 \text {-1 } \\
& +10 \\
& \text { III }\|\| \xlongequal{-1} \mathrm{~T} \text { 49(6) } \\
& \text { TII }\|\|\| \xlongequal{=} \quad 8 \quad \text { 5(7) (6) } \\
& 417(6) \\
& \text { The dividend and } 8 \text { the re- } \\
& \text { mainder of the divisor after sub- } \\
& \text { tracting } 1 \text {, the top figure is put } \\
& \text { down. } \\
& \text { If } 5 \text { the top figure taken up as } \\
& \text { the quotient, the product } 40 \text { of } \\
& 5 \text { the quotient and } 8 \text { the divisor } \\
& \text { cannot be subtracted from } 7 \text { the } \\
& \text { following place number. There- } \\
& \text { fore, the quotient is decreased by } \\
& 1 \text {, and } 10 \text { is returned to the next } \\
& \text { place. } \\
& 32 \text { the product of } 4 \text { the quotient } \\
& \text { and } 8 \text { the divisor cannot be sub- } \\
& \text { tracted from } 17 \text { the next place } \\
& \text { number; therefore, the quotient } \\
& \text { is further decreased by } 1 \text { and } 10 \\
& \text { is returned to the next place. }
\end{aligned}
$$

	$\begin{aligned} & -1 \\ & +10 \end{aligned}$	24 the product of 3 the quotient and 8 the divisor is subtracted
IIT \｜\｜	$\begin{array}{ll} 8 & 3 \text { (22) (6) } \\ \\ -24 \end{array}$	from 27 in the next place． 3 the top figure of 36 the remain－ ing dividend is taken up as the
III III三T	8 3（3）（6）	quotient， 24 the product of 3 the quotient and 8 the divisor connot be subtracted from the next place number．
	$\begin{aligned} & -1 \\ & +10 \end{aligned}$	The quotient is decreased by 1 ， and 10 is returned to the next
III III $=-T$	$\begin{array}{lll} 8 & 3 & 2 \\ & & \\ & & \text { (16) } \end{array}$	place． 16 the product of 2 the quotient and 8 divisor is sub－ tracted from 16 in the next place．
III $11=$	$8 \quad 32$	32 the quotient is obtained．

By adopting the foregoing process，the quotient may be obtained without any thought of discovering the quotient．It was for this reason that the method came to play an important part in the T＇ang period．

6．Diffusion of the Chriu－i 求一 method
Over against the ancient multiplication－division method of calculating by means of reckoning－blocks arranged in three rows，there arose several simplified calculative methods mentioned in the foregoing．The T＇ang period saw a diffusion of a calculative method which extended the ideas of the Shên－wai－chia－ method and the Shên－wai－chien method．

In multiplication，

432×24	was put down as	864×12
432×48	was put down as	1728×12
432×63	was put down as	216×126

Thus multiplicands or multipliers were doubled or halved，thereby the top figure of the multiplier was changed to 1 so that the Shên－wai－chia method might be applied．

In division，

$$
\begin{array}{lll}
756 \div 24 & \text { was put down as } & 378 \div 12 \\
756 \div 48 & \text { was put down as } & 189 \div 12 \\
756 \div 63 & \text { was put down as } & 1512 \div 126
\end{array}
$$

Thus dividends or divisors were doubled or halved there－by the top figure of the divisor was changed to 1 so that the Shên－wai－chien method might be applied．This calculative method was called the $C h^{\kappa} i u-i$ method．And as this
method appeared，the Shên－wai－chia method and the Shên－wai－chien method which had previously been utilized only in special calculation when multipliers or divisors had 1 as their top number，could now be applied to all cases．Conse－ quently，it would seem that these methods were considerably employed during the T＇ang period．For the Yang－hui－suan－fa 楊輝算法（1274），a mathematics book of the Sung period rather thoroughly explains the Chiu－i method；on the other hand，a later book of the Yüan period entitled Suan－hsüeh－chic－mêng 算學啓
 method（which will be discussed later）omits the Ckiu－i－method．The Suan－fa－ chiüan－nêng－chi 算法全能集（c．the 14th century）states that，since the advent of the Kuei－ch＇u method，the Chiu－i 求一 method is not used，though in the earlier days the method was considerably favoured，nowadays only those versed in ancient calculation method know this．This is what the book says．

From these records it may be admitted that the $C h^{c} i u-i$ method was con－ siderably employed prior to the Sung period when the Kuei－ch＇u method came into being．

According to the Lü－li－chih 律曆志 of the Sung－shih 宋史 by Li Yen 李僅， ＂Ch＇ên Ts＇ung－yün 陳從運 of the T＇ang period wrote the Tê－i－suan－ching 得一算經．His method of calculation is said to have consisted of multiplying a figure by a one－place number or by halving it，and then addition or substraction is applied．＂Since the Tê－i－suan－ching has been lost sight of，it is impossible to find out its contents．Judging from the contexts，it may be supposed that this book of the T＇ang period also contained the Chiv－i method．

7．Advent of the Chiu－Kuei 九歸 Method of Division

While the calculative method of multiplication and division was practiced as the normal method from ancient times，we have seen in the foregoing section that the $C h^{\prime} i u-i$ method appeared as a simplified method in the T＇ang－period．

During the Sung period，in the field of division，there appeared a new method of seeking the quotient by means of the supplementary number of the divisor．This is a method of seeking the quotient without using the multi－ plication－table．

This is explained in the Mêng－chi－－pi－t‘an 夢溪篲談，which is not an arith－ metic book，written by Ch＇ên－ch＇ieh 沈括（B．C．1930－94）of North Sung 北宋． The book says：
＂The Tsêng－chêng－i 䚡成一 method，unlike other methods no use of multi－ plication or division．It is operated only by adding the supplementary number which is missing in the divisor．For example，if you desire to divide a number by 9 ，you will add 1 ，and if you desire to divide it by 8 ，you will add 2．＂As for， $272 \div 8=34$

11 ± 11	$\begin{aligned} & 2(7)(2) \\ & +2 \\ & +2 \end{aligned}$	Seeing 2 the top number of the dividend, twice add 2 the supplementary number of 8 the divisor	
$11 \vdash \\|$	$\begin{aligned} & 2 \mathbb{1}(2) \\ & -8 \end{aligned}$	to the next place. The quotient will be 2 .	
	$+1$	From 11 the dividend in the next place subtract 8 the divisor and add	
1111	$\begin{array}{r} 3(3)(2) \\ +2 \\ +2 \end{array}$	1 to the quotient. The quotient will be 3 .	
	$+2$	Seeing 3 the top figure of 32 the remaining dividend, add 2 the	
III \equiv III	$\begin{array}{r} 338 \\ -8 \end{array}$	supplementary number three times to the next place. The	
	+1	quotient will be 33.	
$111 \equiv$	34	From 8 the dividend, 8 the divisor is subtracted, and 1 is added to quotient. The quotient will be 34 .	

It was probably operated in the above-mentioned manner. Before long, however, this method utilized the multiplication-table, and it was most probably changed as follows:

$\\|\overline{1}\\|$	$\begin{gathered} 2 \text { (7) (2) } \\ +4 \end{gathered}$
$\\|\vdash\\|$	$\begin{aligned} & 2 \text { (11) (2) } \\ & -8 \end{aligned}$
	+1
$111 \equiv 11$	3 (3) (2)
	+ 6
$111 \equiv \pi$	3 (8)
	-8
	$+1$
$111 \equiv$	34

2 the top figure of the dividend is multiplied by 2 , the supplementary number of 8 the divisor, and 4 the product is added to the next place. The quotient will be 2 .
From 11 the dividend in the next place, 8 the divisor is subtracted, and 1 is added to the quotient. The quotient will be 3 .
3 the top figure of 32 the remaining dividend is multiplied by 2 the supplementary number of 8 the divisor, and 6 the product is added to the next place. The quotient will be 33 .
From 8 the dividend, 8 the divisor is subtracted and 1 is added to the quotient. The quotient will be 34 .

As，in this method，not only is the quotient automatically sought，but also is calculation rendered more simplified，it must have been favored extensively．

Furthermore，as this method was repeatedly employed，it may be inferred， the people now developed which a system of chants by comparing by sight the top figure of the divisor and the top figure of thedividend enabled them to tell what would be the quotient．In other words，in the above－mentioned exercise：

| $\\| \stackrel{1}{ \pm}$ | $\begin{aligned} & 2 \text { (7) (2) } \\ & +\quad 4 \end{aligned}$ | |
|---|---|---|---|
| $\\|\dashv\\|$ | $\begin{aligned} & 2 \text { (11) (2) } \\ & -8 \end{aligned}$ |
| | ＋1 |
| $111 \equiv 11$ | 3 （3）（2） |
| | ＋ 6 |
| III 三 III | 3 3 8 |
| | －8 |
| $111 \equiv$ | ＋ 1 |
| | 34 | As the top figure of the dividend is 2，chanting Ch＇ien－êrh－hsia－ ssu 見二下四（See－two－add－four－ down）add 4 to the next place． Chanting Fêng－pa－ch＇êng－shih逢八成十（Meet－eight－make－ten）， subtract 8 the divisor from 11， the dividend and advance 1 by one place and add 1 to the quotient．

As the top figure of the remaining dividend is 3 ，chanting Chrien－ san－hsia－liu 見三下六（See－three－ add－six－below），add 6 to the next place：
Chanting Fêng－pa－ch＇êng－ten 逢八成十（Meet－eight－make－ten）， subtract 8 the divisor from 8 the dividend，advance 1 by one place and add 1 to the quotient． 34 the quotient will be obtained．
Though these chants were no doubt somewhat variegated in different periods， in the course of time they came to assume the following forms．They are so formed that by seeing the top figure of the divisor and the top figure of the dividend，the quotient and the remainder may be indicated．

Division by 2：－
Erh－i－t＇ien－tso－wu \quad 二一添作五（Two－one－attach－make－five）
F＇êng－êrh－chin－ch，ngê－shih 逢二進成十（Meet－two－above－make ten）
Division by 3：－
San－i－san－shih－i
San－êrh－liu－shih－êrh
Fêng－san－chin－ch＇êng－shih
三一三十一（Three－one－make－thirty－one）
三二六十二（Three－two－make－sixty－two）
逢三進成十（Meet－three－above－make－ten）
Division by 4：－
Ssŭ－i－êrh－shih－êrh
四一二十二（Four－one－make－twenty－two）

Ssǔ－êrh－t＇ien－tso－wu
Ssŭ－san－ch＇i－shih－êrh
Fêng－ssŭ－chin－ch＇êng－shih Division by 5：－

Wu－i－pei－tso－êrh
Wu－êrh－pei－tso－ssŭ
Wu－san－pei－tso－liu
Wu－ssŭ－pei－tso－pa
Fêng－wu－chin－ch＇êng－shih Division by six：－

Liu－i－hsia－chia－ssŭ
Liu－êrh－san－shih－êrh
Liu－san－t＇fien－tso－wu
Liu－ssŭ－liu－shih－ssǔ
Liu－wu－pa－shih－êrh
Fêng－liu－chin－ch＇êng－shih Division by 7：－

Ch‘i－i－hsia－chia－san
Chí－êrh－hsia－chia－liu
Ch＇i－san－ssŭ－shih－êrh
Ch＇i－ssŭ－wu－shih－wu
Ch＇i－wu－ch＇i－chi ${ }^{\text {－shih }}$－i
Ch‘i－liu－pa－shih－ssŭ
Fêng－ch＇ii－chin－ch＇êng－shih
Division by 8：－
Pa－i－hsia－chia－êrh
Pa－êrh－hsia－chia－ssǔ
Pa－san－hsia－chia－liu
Pa－ssŭ－t＇ien－tso－wu
Pa－wu－liu－shih－êrh
Pa－liu－ch＇i－shih－ssǔ
Pa－ch＇i－pa－shih－liu
Fêng－pa－chin－ch＇êng－shih Division by 9：－

Chiu－i－hsia－chia－i
Chiu－êrh－hsia－chia－êrh
Chiu－san－hsia－chia－san
Chiu－ssǔ－hsia－chia－ssŭ
Chiu－wu－hsia－chia－wu
Chiu－liu－hsia－chia－liu

四二添作五（Four－two－attach－make－five）
四三七十二（Four－three－make－seventy－two）
逢四進成十（Meet－four－above－make－ten）

五一倍作二（Five－one－double－make－two）
五二倍作四（Five－two－double－make－four）
五三倍作六（Five－three－double－make－six）
五四倍作八（Five－four－double－make－eight）
逢五進成十（Meet－five－above－make－ten）

六一下加四（Six－one－add－four－below）
六二三十二（Six－two－make－thirty－two）
六三添作五（Six－three－attach－make－five）
六四六十四（Six－four－make－sixty－four）
六五八十二（Six－five－make－eighty－two）
逢六進成十（Meet－six－above－make－ten）

七一下加三（Seven－one－add－three－below）
七二下加六（Seven－two－add－six－below）
七三四十二（Seven－three－make－forty－two）
七四五十五（Seven－four－make－fifty－five）
七五七十一（Seven－five－make－seventy－one）
七六八十四（Seven－six－make－eighty－four）
逢七進成十（Meet－seven－above－make－ten）

八一加下二（Eight－one－add－two－below）
八二加下四（Eight－two－add－four－below）
八三加下六（Eight－three－add－six－below）
八四添作五（Eight－four－attach－make－five）
八五六十二（Eight－five－make－sixty－two）
八六七十四（Eight－six－make－seventy－four）
八七八十六（Eight－seven－make－eighty－six）
逢八進成十（Meet－eight－above－make－ten）
九一下加一（Nine－one－add－one－below）
九二下加二（Nine－two－add－two－below）
九三下加三（Nine－three－add－three－below）
九四下加四（Nine－four－add－four－below）
九五下加五（Nine－five－add－five－below）
九六下加六（Nine－six－add－six－below）
Chiu－ch＇i－hsia－chia－ch‘i 九七下加七（Nine－seven－add－seven－below）

Chiu－pa－hsia－chia－pa 九八下加八（Nine－eight－add－eight－below）
Fêng－chiu－chin－ch＇êng－shih 逢九進成十（Meet－nine－above－make－ten）
The method of division operaten by means of these chants is called the Chiu－kuei 九歸 method．

The exact date of the advent of the Chiu－kuei method is not known，but seeing that the Yang－hui－suan method 楊輝算法（1274）says that＂The Chi－nan－ suan－fa 指南算法 describes the Shên－wai－chia method the Shên－wai－chien method the Chiu－kuei method and the Chicu－i method．From this it is evident that in 1078－ 1189 when the Chi－nan－suan－fa was written the Chiu－kuei method had already existed．However，the Chi－nan－suan－fa itself is not extant．

After the advent of the Chiu－kuei method an attempt was made to extend this method to division by more than two place divisors．

The Yang－hui－suan－fa says：＂In the division by one－place－devisor，instead of the Shang－ch $h^{\mathfrak{u}}$ 商除 method（the ancient division operated by arranging the figures in 3 rows the top，middle，and the bottom），the Chiu－kuei method is employed．In the division by two－place or three－place devisors，the Shang－ch＇u method is more suitable．People nowadays employ the Chiu－kuei method in an extended form；referring to the top figure of the devisor，they seek the quotient by reciting the Chiu－kuei chants and adopt the method of subtracting from the dividend the product obtained by successively multiplying the quotient and the second－place and third－place numbers of the divisor．In other words，they apply both the Chiu－kuei method and the Shang－ch＇u method in one and the same calculation．＂In this method，for example，in calculating $684 \div 38$ ，seeing that the top figure of the divisor is 3 ，they use the chant of divison by 3 ．

38	$\begin{array}{r} \text { (6) (8) (4) } \\ -3 \\ +100 \end{array}$	Chanting Fêng－san－chin－ch＇êng－shih 逢三進咸† （Meet－three－above－make－ten），they subtract 3 from 6 the dividend，advance 1 to the place above it to
38	$\begin{gathered} 1(3)(8)(4) \\ -8 \end{gathered}$	make 1 the quotient． 8 the product of 1 the quotient and 8 the second
38	1 （2）（10）（4）	place figure of the divisor is subtracted at the second place below from the quotient．
38	$\begin{gathered} 1 \begin{array}{c} 6(12)^{(4)} \\ -3 \\ +10 \\ -3 \\ +10 \end{array} \end{gathered}$	Chanting San－êrh－liu－shih－êrh 三二六十二（Meet three－two－make－sixty－two）， 2 the top figure of（2）（10） （4）the remaining is changed to 6 ，and 2 is added to the next place． Chanting twice Fêng－san－chin－ch＇êng－shih 逢三進成
38	$\begin{array}{r} 18 \text { (6) (4) } \\ -64 \end{array}$	＋（Meet－three－above－make－ten），from 12 the dividend 3 is subtracted twice，and 1 is advanced
38	18	twice to a higher place，the quotient is 8.

The product of 8 the quotient and 8 the second－ place number of the divisor is subtracted from 64 ， 18 the quotient is obtained．

In the case of dividing 2301 by 39 in this method，considerable thinking is needed．Therefore，it would seem that in the division by more－than－two place divisors the Chiu－kuei method was not used frequently：In and after the Yüan period，however，combined with such new methods as the Huan－yïan 還原 method and the Ch＇ung－kuei 撞歸 method adopted，this method，under the new name the Kuei－ch u 歮除 method，for the first time began to prove its real value as an exceedingly simplified division method and enjoy an extensive popularity．

8．Progress of Multiplication

The methods of division practised during the Sung period were：
（1）The Shang－ch＇u method handed down from ancient times in which calculation were operated by means of the reckoning－blocks arranged in the three rows，the top，the middle，and the bottom．
（2）The Shên－wai－chien 身外減 method as a simplified method used in cases where the top figure of the divisor is 1 ，and the $C k^{c} i u-i$ 求一 method which is only a practical application of the same；
（3）And the Chiu－kuei method which at length came into being．
Now，how fared the method of multiplication？The Yang－hui－suan－fa explains：When the divisor is of a single place，＂First memorize the divisor， start multiplying the multiplicand beginning with the numbers in the higher places；where the multiplication table includes＂make ten＂，put down the product beginning with one place above the multiplicand，and where the chant contains a blank place change the multiplicand in each chant for the product．＂ It is evident that the method practised since the North－South dynasty periods was still being operated in entirety．

When the divisor is of more than two place figures，they were called Hsiang－chêng 相乘（mutual multiplication）．

In calculating：

$$
247 \times 736=181792
$$

the following diagram is given：
$\pi \equiv T{ }^{\| \equiv \pi}$

247 the multiplicand and 736 the multiplier are put down in the top and bottom rows so that 2 the top figure of the multiplicand and 6 the bottom figure of the multiplier come into the same place．

2 the top figure of the multiplicant and 736 the multiplier are multiplied（ 2×7 ， $2 \times 3,2 \times 6$ successively）and obtain 1472 ．

736 the multiplier is lowered by one place， and is multiplied by 4 the multiplicand； and 2944 the product is added to 14720 and 17664 is obtained．

736 the multiplier is further lowered by one place and is multiplied by 7；and 5152 the product is added to 17664 and 181792 is obtained．

$$
\begin{gathered}
1472 \equiv \pi \\
\pi \equiv T
\end{gathered}
$$

$\begin{array}{llllll}1 & 7 & 6 & 6 & 4\end{array}$

$$
\pi \equiv T
$$

$\begin{array}{llllll}1 & 8 & 1 & 7 & 9 & 2\end{array}$

In this way，during the Sung period the multiplication method operated by arranging reckoning－blocks in the three horizontal rows，the top，the middle，and the bottom，came to be simplified to be operated in the two horizontal rows， the top and the bottom．Besides，this multiplication method was operated as the ordinary method，and the Shên－wai－chia 身外加 method used as a simplified method when the top figure of the multiplier is 1 ，and also its practical application called the $C h^{i} i u-i$ method were practised．

9．The Perfection of the Kuei－ch＇u Method

Over against the ancient Shang－ch＇u method of calculating by means of arranging reckoning－blocks in three horizontal rows，top，middle and bottom； the Chiu－i 求一 method came to be employed both for a greater ease of seeking the qnotient and for a greater simplicity of the calculative method，while as has been mentioned there came into being the Chiu－kuei method，．．a method of division operated by means of special chants for automatically seeking the quotient．

The Chiu－kuei method which was at first employed only when the divisor happened to be a one－place number，came to be used also when the divisor was of a more－than－two－place number．In the latter cases，however，it seems that it was not usually employed because of difficult calculations involved．

However，as（1）The Huan－yüan method for revising the quotient in which， as in the Shên－wai－chien method，when the quotient is too great，calculation is operated by subtracting 1 from the quotient and by adding to the dividend the top figure of the divisor，and
（2）The Chiung－kuei method in which when the top place of the dividend and the divisor happen to be of the same number and the number in the next
place of the dividend happens to be smaller（as，for example， $3024 \div 36$ ），reciting the chant＂Chien－san－wu－ch＇u－tso－chiu－san 見三無除作九三（See－three－no－dividend－ make－ninety－three）， 9 is temporarily considered the quotient，as these two methods came to be used concurrently，even when the divisor was of a more－than－two－ place number，calculation could be operated most easily and quickly．As to the chants of the Chiu－kuei method，were added the chants of the Huan－yïan還原 method and of the Chiung－kuei 撞歸 method which are given in the following， the method of division called Kuei－ch＇u method for division with a more than twoplace divisor was now perfected．
Division by 2：－
Chien－êrh－wu－ch‘u－tso－chiu－êrh 見二無除作九二（See－two－no－dividend－ make－ninety－two）
Wu－ch‘u－chien－i－hsia－huan－êrh 無除滅一下還二（No－dividend－subtract－ one－add－return－two－below）

Division by 3 ：－
Chien－san－wu－ch＇u－tso－chiu－san 見三無除作九三（See－three－no－dividend－ make－ninety－three）
Wu－ch＇u－chien－i－hsia－huan－san 無除滅一下還三（No－dividend－subtract－one－ add－return－three－below）

Division by 4 ：－
Chien－ssǔ－wu－ch＇u－tso－chiu－ssŭ 見四無除作九四（See－four－no－dividend－ make－ninety－four）
Wu－ch‘u－chien－i－hsia－huan－ssŭ 無除減一下還四（No－dividend－subtract－ one－add－return－four－below）
Division by 5：－
Chien－wu－wu－ch‘u－tso－chiu－wu 見五無除作九五（See－five－no－dividend－ make－ninety－five）
Wu－ch‘u－chien－i－hsia－huan－wu 無除減一下還五（No－dividend－subtract－ one－add－return－five－below）
Division by 6：－
Chien－liu－wu－ch＇u－tso－chiu－liu 見六無除作九六（See－six－no－dividend－ make－ninety－six）
Wu－ch＇u－chien－i－hsia－huan－liu 無除減一下還六（No－dividend－subtract－one－ add－return－six－below）
Division by 7：－
Chien－chi－wu－ch＇u－tso－chiu－chi 見七無除作九七（See－seven－no－dividend－ make－ninety－seven）
Wu－ch‘u－chien－i－hsia－huan－chi 無除減一下還七（No－dividend－subtract－one－ add－return－seven－below）

Division by 8：－
Chien－pa－wu－ch‘u－tso－chiu－pa 見八無除作九八（See－eight－no－divinded－ make－ninety－eight）
Wu－ch‘u－chien－i－hsia－huan－pa 無除滅一下還八（No－dividend－subtract－ one－add－return－eight－below）
Division by 9：－
Chien－chiu－wu－ch＇u－tso－chiu－chiu 見九無除作九九（See－nine－no－dividend－ make－ninety－nine）
Wu－ch＇u－chien－i－hsia－huan－chiu 無除減一下還九．（No dividend－subtract－ one－and－return－nine－below．）
Here is a calculation exercise in which the chants of the Huan－yüan and Ch＇ung－kuei methods may be used． $2301 \div 39=59$

39
-1
$+3$
$39 \quad 5$（8）（0）（1）
-45
5 （3）（5）（1）
$+6$
$+3$
5 （8）（1）
$-8 \quad 1$
59
39

Looking at 3 the divisor and 2 the top figure of the dividend，recite San－êrh－liu－shih－êrh 三二六十二 （Three－two－make－sixty－two），change 2 to 6 and add 2 to the next place．
6 （5）（0）（1）Now that the quotient has become 6， 54 the product obtained by multiplying it by 9 ，the figure in the next place of the divisor is subtracted．As 54 cannot be subtracted from 50 ，reciting Wu－ch＇u－ chien－i－hsia－huan－san 無除滅一下還三（No－dividend－ subtract－one－add－return－three below），subtract 1 from 6 the quotient，and add，to the next place of the quotient 3 the top figure of the divisor． 45 the product of 5 the quotient multiplied by 9 the next figure of the divisor is subtracted from 80 in the next places．
The top figure of 351 the remainder of the dividend is 3 and identical with the top figure of the divisor； but when the next places of both are compared， that of the dividend is the smaller，reciting Chien－ san－wu－ch‘u－tso－chiu－san 見三無除九三（See－three－ no－dividend－make ninety－three），change 3 to 9 ，and add 3 to the next place．
Now that 9 has become the quotient， 81 the product multiplied by 9 the figure in the next place of the divisor is subtracted from 81 in the next places．
59 the quotient is obtained，

It is not known exactly when the Huan－yiuan method and the $C h^{\prime} u n g$－kuei method were adopted by the Chiu－kuei method，and the perfect method of division called the Kuei－ch＇u method．However，the Suan－hsieh－chi－mêng 算學䜿蒙（1299）by Chu Shih－chieh 朱世謋 of the Yüan period，in connection with the Chiu－kuei－ch＇u 九歸除 method，says＂When the dividend is smaller than the divisor，according to the chants of the Chiu－kuei method，change the top figure of the dividend for the quotient，when the dividend is greater than the divisor， the quotient is carried beyond the dividend．Care must be taken in this case to retain within the dividend the product of the quotient multiplied by the figures below the second place of the divisor．
＂When the top figure of the divisor and the dividend are similar，make it ninety odds．＂
＂If，in seeking the quotient，the product of the quotient multiplised by the second place figure of the divisor cannot be subtracted，reduce I from the quotient and restore the top figure of the divisor．＂From the existence of some chants to this effect，it may be infered that by this time the Chiu－kuei method had already adopted the Huan－yüan method and the Chiung－kuei method．

The book further says：＂Foremerly people commonly used the Shang－ch＇u method．As this method is too difficult for beginners，later people came to use the Kuei－chu method in stead of the Shang－ch＇u method．Yet this is not the normal method．＂

In spite of this fact，the book neglects to explain the Shang－chiu method，but explains the Kuei－ch＇u method exclusively．Therefore，it may be said that the traditional Shang－ch＇u method operated by arranging reckoning－blocks in three horizontal rows though recognized as the ordinary method was no more used， and the Kuei－ch＇u method came to take its place．

Besides，the Suan－fa－chüan－nêng－chi of the 14th century says：＂Since the completion of the Kuei－chiu method，the Chiu－i 求一 method has never been used．＂＂The Shang－ch＇u method includes in one all the three methods，the Chiu－ kuei，the Shên－wai－chien，the Kuei－ch＇u，but is inferior to them in the speed of calculations．＂

The Hsiang－ming－suan－fa 詳明算法（1373）says：＂Though the Shang－ch＇u method is a culculative method which inclucles in one all the Chiu－kuei，the Shên－wai－chien，and the Kuei－ch u ，a man need not learn it if he is versed in the Kuei－ch＇u method．Only in calculating evolutions the Shang－ch u method is invariably employed．＂

As these books state，since the coming of the Kuei－ch $h^{\prime} u$ method came to be used，the Chiu－i method which had been extensively used since the T＇ang period， and the Shang－ch u method practised since remote antiquity，all these had gone out of use．

This being the case，division in these days，was operated separately as follows：When the divisor was a one－place number，the Chiu－kuei method was employed：and when the divisor was a more than two－place number，the Shên－ wai－chien method was employed if the top figure of the divisor was 1 ，and the Kuei－ch＇u method if the top figure of the divisor was $2 \sim 9$ ．

10．The Perfection of the Method of Multiplication

While the method of division evolved from the ancient Shang－chiu method and the Chicu－i method to the Kuei－ch＇u method，the method of multiplication also underwent considerable changes．

The ancient method of multiplication operated by means of reckoning－ blocks arranged in three horizontal rows was superceded in the Sung period by another operated by means of reckoning－blocks arranged in two horizontal rows； then in the Yüan period when division by means of the Kuei－chiu method was extensively diffused，a new multiplication named Liu－t＇ou－cnteng 留頭乘 method came into being．

The Suan－hsüeh－ch＇i－mêng 算學緊蒙（1299）of the Yüan period says：＂The Liu－t＇ou－chêng method differs from the previous methods．To begin with，multi－ plication is started with the numbers at the second place of the multiplier；the number in the Chinese chant containing the character shih + （ten）in the multiplication table is put down after the multiplicand and the number in the Chinese chant containing the character $j u$ 如 is put down with one place left blank．After the numbers below the second place number of the mutiplier are multiplied，come back to the top number and change the multiplicand，for the product．＂

This is the chants to the effect．Let us explain：

$$
27 \times 236=6372
$$

When the multiplier is a one－place number，it was called Yin 因 method （method of simplification）and as in the previous days，a multiplication process was under－taken beginning with the figures in the top place of the multiplicand， but since the period in which the Hsiang－ming－suan－fa（1373）was written the
rule was revised to calculate from the bottom figure of the multiplicand．
In this way was now established the principle to start calculation in division from the left of the dividend and in multiplication from the right of the multiplicand．In multiplication calculation from the top place was now changed to calculation from the bottom place．What prompted this radical change cannot bs known，but from the fact that this change coincides with the evolution of the Kuei－chiu method，it may be attributed to a very simple idea that as in division the quotient comes to the left of the dividend，in multiplication the product should come to the right of the multiplicand．

Incidentally，the Hsiang－ming－suan－fa contains another method of multi－ plication other than the Liu－t＇ou－chêng 留頭嵊 method．For example， 27×236 is calculated as follows：
236

$$
2(7)
$$

			4	2	\ldots
		2	1	7×6	
1	4	\ldots	\ldots	7×3	
1	4	\ldots	\ldots	.	7×2
(2)	1	6	5	2	
	1	2		2×6	
	0	6			2×3
0	4				2×2
	6	3	7	2	

7 the multiplicand is changed to 1 and 4 is added to the next place．

2 the multiplicand is taken，and 4 is added to the next place．
This is a method later called Chao－i－chêng 掉尾乘 method and considerably used in the Yedo 江戸 period in Japan．But in the Ming period，it seems，the Liu－t＇ou－chêng method was generally used and this method was little used．

Therefore，multiplication in this period was operated separately as follows：
When the multiplier was a one－place number，the Yin－method was employed， and the multiplier was a more－than－two－place number，the Shên－wai－chia method was employed if the top figure of the multiplier was 1，and the Liu－t＇ou－chêng method if the top place number was $2 \sim 9$ ．

11．From the Reckoning－blocks to the Abacus
The calculative method by means of reckoning－blocks，while fully displaying
 its characteristics land undergoing several improvements，since remote antiquity，had achieved a brilliant and unrivalled development by the middle of the Ming period．

We may now turn to the abacus， a calculative instrument extensively employed even now in the Orient．
3627 Represented on the Chinese Style Abacus．

Mathematics in China had always been developed as an important science for the government officials. The reckoning-blocks had been employed chiefly by taxation-officers and mathematicians. On the other hand, the abacus seems to have been popular among the masses, the less intellectual tradesmen.

Consequently, it would seem that multiplication and division by means of the abacus were operated most crudely, multiplication being simply a repetition of additions and division simply a repetition of subtractions.

For example:

$$
84 \times 23=1932
$$

(1) 84 the multiplicand is put down, 23 the multiplier is added 4 times to obtain 92.
$1932 \div 23=84$

(1) 1932 the dividend is put down.

(2) 23 the multiplier is added 8 times to obtain 1932 the result.

2) Subtract 23 the divisor from the top place and add 1 for the quotient. Repeat this and obtain 8 the quotient and 92 the remainder.

(3) Repeat the same thing with 92 the remainder. 84 is the quotient with no remainder.

It would seem that the calculation was most probably operated like this. The abacus with only such crude methods of multiplication and division (probably so much handier for those unintellectual people) proved exceedingly convenient in addition or subtraction.

By the middle of the Ming period when trade arose and prospered in the basins of the Yang-tse River, the abacus seems to have been recognized and
considerably diffused．In addition to this，it was most fortunate for the abacus that about this time the multiplication and division methods by means of reckoning－ blocks had been changed（by adopting the Liu－t＇ou－chêng 留頭乘 method and Kuei－ch＇u method）so that they could very well be operated entire on the abacus．

Consequently，the abacus，by adopting the multiplication and division methods of reckoning－blocks，succeeded in achieving a far greater success than that of the reckoning－blocks．

The abacus which could now operate addition，subtraction，multiplication， division，evolution，by the end of the Ming period，had been diffused through the whole land．Having expelled the reckoning－blocks，it moved out into the lime－light as the only calculative instrument．

The abacus was introduced to Japan toward the end of the 16th century． The Japanese－style abacus which had improved the Chidese－style has achieved a success even more brilliant than that of the Chinese．

The abacus，the simplest，the cheapest，and the most damage－proof abacus， which is even today loved as a convenient calculative instrument in the Orient， has become a worthy support in our economic life．

For Reference：

In modern Japan，we use the abacus with somewhat angular beads，on columns which have each one bead representing five，and 4 others which represent one each，and is convenient for carrying about．Multiplication and division are operated in the following way．Though an expert can calculate squares root and cube，root and quadratic or cubic equation．However，such calculations will be omitted here．

Multiplication：

$$
27 \times 236
$$

27 the multiplicand is put down at the centre and 236 the multiplier is put down on the left．

Division:
$2592 \div 48$
The dividend is put

and the divisor on the left.
From $25 \div 4$, the quotient is obtained as 6 , and this is put up ahead.
$6 \times 4=24$
This is subtracted from the dividend. $6 \times 8=48$
This cannot be subtracted from 19 the remainning dividend. The quotient is decreased by 1 ; and 4 the first figure of the divisor. is added to the dividend the quatient is $5.5 \times 8=40$ This is subtracted from the remaining dividend.

$$
\begin{aligned}
& 4 \times 4=-1 \quad 6 \\
& 4 \times 8=-3 \\
& \text { (5) (4) }
\end{aligned}
$$

From 19 $\div 4$, the quotient is obtained as 4 .
$4 \times 4=16,4 \times 8=32$
These are subtracted from the remainder of the dividend.

